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Abstract

We study the scattering properties of sine-Gordon kinks on obstructions in the
form of finite size potential ‘wells’. We model this by making the coefficient
of the cos(¢) — 1 term in the Lagrangian position dependent. We show that
when the kinks find themselves in the well they radiate and then interact with
this radiation. As a result of this energy loss, the kinks become trapped for
small velocities while at higher velocities they are transmitted with a loss of
energy. However, the interaction with the radiation can produce ‘unexpected’
reflections by the well. We present two simple models which capture the gross
features of this behaviour. Both involve standing waves either at the edges of
the well or in the well itself.

PACS numbers: 11.10.Lm, 12.39.Dc, 03.75.Lm

1. Introduction

Recently [1], we have performed a detailed study of scattering properties of (2+1)-dimensional
topological solitons on potential wells. This work was based on the ‘baby’ Skyrme model, i.e.
we used the Lagrangian density which consisted of three terms: the pure S? sigma model, the
Skyrme and the potential terms:

L=0,0- "¢ —05s[(0, - 0"$)> — (3,6 - 0,6)(3"d - 3"®)]1 - V($) (1)
where
V(@) = n(l - ¢3). )

The vector qg was restricted to lie on a unit sphere S? hence we put (2; . (l; =1

To generate the potential well, the coefficient of the potential term p was made x dependent.
For x outside the well it had one value, say, /o, and inside the well, i.e. fora < x < b, its
value was reduced to u;,. This choice of p did not affect the vacuum (taken as ¢35 = +1); the
skyrmion was given by a field configuration which varied from ¢3 = +1 far away from the
position of the skyrmion to ¢p3 = —1 at its position. Initially, the skyrmions were placed far

1751-8113/07/225995+16$30.00  © 2007 IOP Publishing Ltd  Printed in the UK 5995


http://dx.doi.org/10.1088/1751-8113/40/22/016
http://stacks.iop.org/JPhysA/40/5995

5996 B Piette and W J Zakrzewski

away from the ‘well’ (so that all the variation of ¢35 from +1 took place for x well away from
the ‘well’, i.e. for x < a).

The ‘skyrmions’ were then sent towards the well and their properties were studied. The
obtained results have shown that when the solitons fall into the ‘well’ they get deformed
and this deformation may excite the vibrational modes of the skyrmion and may lead to the
skyrmions radiating away their excess of energy. In consequence, the skyrmions can get
‘trapped’ in the well or emerge from it with a reduced velocity. In [2] we presented a simple
four mass model which apes the vibrational modes of the skyrmion and we showed that
many of the observed scattering properties of skyrmions can be reproduced in this model—
suggesting that their origin resides in the excitation of the lowest vibrational modes of the
skyrmion.

Given this, it is important to check what happens in models in which the solitons have
fewer vibrational modes and so we have decided to look at the (1+1)-dimensional sine-Gordon
model and see what happens when its kinks scatter on the potential wells.

In the next section, we discuss our results obtained for the sine-Gordon model. In this
model we include a finite size, finite depth, potential well which is introduced by appropriately
modifying the coefficient of the nonlinear term in the Lagrangian. The results are qualitatively
similar to what we have seen in the two-dimensional model and are not very different from
the results obtained some time ago by Fei ez al [3], in a work which involved the scattering of
sine-Gordon kinks on a one-point impurity.

The idea of studying the scattering of sine-Gordon kinks on defects has a long history.
Campbell and Peyrard [4, 5] have generalized the earlier work on kink—antikink interactions
in A¢* theory [6] to the sine-Gordon model. Their work presented very elegant physical
arguments that stressed the importance of the waves that get generated during the interaction.
A general review of this work and of the other work on soliton dynamics in perturbed sine-
Gordon equations can be found in [7]. The work of Campbell and Peyrard has inspired
Goodman and collaborators to study the effects of defects further. Their early papers [8, 9]
dealt mainly with studying the effects in optics and they have finally led to their ‘two-bounce’
resonance model [10]. In this ‘two-bounce’ model Goodman ef @/ [10] have managed to
explain the old results of Fei et al [3] in some detail. Their model, which in fact is based
on the original idea of Fei et al [3] (see also a recent review [11]), associates the observed
phenomena with the interaction between the kink and the waves that describe the oscillation
of the vacuum (around the impurity) and which get generated by the passage of the kink. This
interaction is described by very specific modes and only the strength of these modes can vary
during the scattering process.

The sine-Gordon equation is used to describe a very wide range of physical systems
including, amongst others, the Josephson effects [12], particle physics [13], information
transport in microtubules [14], nonlinear optics [15] and ferromagnets [16]. After the
introduction of dimensionless variables, one is usually left with the sine-Gordon equation
with a coefficient A multiplying the sin(¢) term and such that this coefficient is related to the
physical parameters of the system. In homogeneous media, X is simply a constant parameter,
but in an inhomogeneous medium A becomes a function of x. For example, in microtubules,
A is proportional to the dipole density in the vicinal water in brain microtubules [14]. In
nonlinear optics A is proportional to the dipole moment density and inversely proportional
to the dielectric constant of the medium [15]. In an inhomogeneous medium, A would thus
be very much like the potential that we consider in this paper. In ferromagnetic chains, A is
proportional to both the magnetic moment of the medium and the magnetic field in which the
chain is immersed. Again, one could consider inhomogeneous media or experiments in which
the magnetic field is position dependent.
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In their work, Fei et al and Goodman have only considered the sine-Gordon model with
a delta-like potential which describe media containing impurities. In this paper, we consider
the more general case of a well of finite depth and finite width which correspond to genuine
inhomogeneous media.

The model of Goodman et al has reproduced all the features of the results of the original
simulations reported in [3]. Hence, in the following section we introduce a similar model for
our case which now involves a finite well of width 2p and depth 1 — A. To do this we make
an ansatz for an approximate field which describes the system. It involves a sine-Gordon kink
which is allowed to alter its slope and we add to it two amplitudes of oscillation of the vacuum
(at each end of the ‘well’).

In section 3, we derive the Lagrangian for such an effective model from the original
Lagrangian. As the model is somewhat crude we make some drastic approximations in our
derivation of the Lagrangian but still find that the model reproduces the main features of the
scattering reasonably well. Hence, we believe the ideas of Goodman and collaborators to be
correct and be more general in nature—thus showing that due to the interaction of the soliton
with the radiation in the well its behaviour can be quite complicated and can result in the
reflection of the soliton by the well, i.e. a process which is purely classical in nature but could
be confused with a quantum behaviour. To confirm this further we introduce a further model
(with a couple of radiation standing waves in the well) and again reproduce the main features
of the full scattering process.

The last section presents some concluding remarks.

2. Sine-Gordon model and its kinks

We take the Lagrangian of the (1+1)-dimensional sine-Gordon model in the form

L=0d,9- "¢ —2*sin(p), 3)
where, for the kink, the basic field ¢ goes from 0 at x = —o0 to 7 at = oo. In the static case
its explicit form is

@(x) = 2tan"" (exp(f(x — x0)), 4)

where x is the kink’s position and 6 is its slope. For (4) to be a solution of the equations of
motion which follow from (3) we need to set 6 = A.
To have a ‘well’ we set
1 for |x| >
A= P )
Ao for |x| < p.
Clearly, 1y < 1 describes a well while Ao > 1 describes a barrier. As the two-dimensional
studies gave more interesting results for the wells in this paper we restrict our attention to
)\.0 < 1.
We have performed many numerical simulations, varying Ao and p (the width of the well).

2.1. Numerical simulations

We have performed most of our simulations using a 10001-point lattice with the lattice spacing
being 0.05. Hence our lattice extended from —50 to +50. The kink was initially placed at
xo = —40. Its size was determined by 6 = 1 which means that its field was essentially ¢ ~ 0
for x < —45 and ¢ ~ 7w for x > —35. Thus, there were no problems with any boundary
effects (we have verified this by altering the lattice size and x).
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Figure 1. Velocity of the kink leaving the well as a function of its velocity as it approaches the
well (p =5, 40 =0.2).

We have performed three sets of simulations: one involving a very narrow ‘well’ (p = 0.5)
and two involving a larger well (p = 5) (one shallow—2Xy = 0.8 and one rather deep—
Ao = 0.2). In each case we sent the kink (originally at x) = —40) towards the well varying its
initial velocity. To do this we took the expression for a kink moving with velocity v, i.e.,

1
Y = —F/—=
V1 =2

(obtained by Lorentz boosting (4) and setting & = 1) and then used it to calculate the initial
conditions (¢(x, 0) and W).

All our simulations were performed using a fourth-order Runge—Kutta method for
simulating the time evolution. The time step of our simulations was taken to be 0.0001.
We used fixed boundary conditions and later we also used absorbing boundary conditions at
the edges of the lattice. This was generated by successively decreasing the magnitude of %—f
for the last 50 points at both ends of the lattice.

@(x, 1) = 2tan” " (exp(y (x — x0 — v1))), (6)

2.2. Deep well

In the deep well case we took Ag = 0.2 and p = 5. We have found that when the kink was in
the well it radiated and so when it finally emerged from the well its velocity was lower than the
initial velocity. This was due to the fact that the well distorted the soliton which then began
vibrating (i.e. its slope started oscillating). These vibrations were then gradually converted
into radiation with the slope settling at its original value. The curve of the final velocity as a
function of the initial one is shown in figure 1. As is clear from the plot, the kink whose initial
velocity is less than v, ~ 0.527 gets trapped in the well. The curve is very smooth and, as
expected, we note that for initial velocities larger than v, the final velocity is always smaller
than the initial one demonstrating the loss of the kinetic energy of the kink through vibration
resulting in radiation.
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Figure 2. Velocity of the kink leaving the well as a function of its velocity as it approaches the
well (p =5, Ag = 0.8). (a) Full plot. (b) A close-up for small velocities.

2.3. Shallow well

For a shallow well we took Ao = 0.8 and still p = 5. This time the critical velocity is much
smaller (as the well perturbs the kink much less). The curve of the outgoing velocity as a
function of the incoming one is shown in figure 2(a).

Looking at the plot we note that there is some irregularity close to the threshold. Blowing
it up (see figure 2(b)) we note that just below the critical velocity we also have some negative
velocities (i.e. the whole process looks as if the kink was reflected by the well!). Thus in
addition to trajectories like those in figures 3(a) and (b) we also have trajectories like those of
figure 3(c)

Of course, the reflected trajectory is somewhat unexpected; this is what one would expect
in a quantum system but here we have a completely classical system and we have a reflection
by the well. Clearly, this reflection must be somewhat related to the interaction of the deformed
kink with the radiation that is present in the well. To look at this in more detail we have also
looked at a very narrow well.

2.4. Very narrow well

This time we took p = 0.5 and Ag = 0.2. The obtained curve of the velocities is shown in
figure 4(a). Again we see an interesting behaviour close to the threshold, and blowing it up
we get figure 4(b).

Are these results just numerical artefacts? To answer this question we have carried out
several tests. First we changed the lattice size (increased the number of points, changed the
lattice spacing) and changed the time step in the Runge—Kutta scheme. However, the observed
pattern of reflections was reproduced in all simulations. We have also varied the discretization
scheme and, among others, also considered the ‘topological discretization’ of Speight and
Ward [17]. All simulations using these discretizations exhibited similar patterns, with the
values of the outgoing velocities seen in all of them being essentially the same (the values
differed only in the fourth decimal points). Of course, these velocities were always smaller
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Figure 3. Typical trajectories (p = 5,1 = 0.8). (a) Below ‘threshold’ (v = 0.071535),
(b) transmitted (v = 0.077 983) and (c) reflected (v = 0.071514).

than the incoming ones. Hence, we believe the effect to be genuine and so we are left with
having to explain its origin.

Performing a literature search we have found the above-mentioned paper by Fei et al [3].
In that paper the authors studied the scattering of sine-Gordon kinks on a one-lattice-point
impurity (at one-lattice site the potential Ap? was changed to a different value, A'?). Figure 11
of that paper looks amazingly similar to our figure 4(b). Of course, our potential corresponds
to a superposition of defects of Fei et al so not surprisingly the pattern is more evident in a
system involving a smaller well. However, the fact that the effect persists and is seen for larger
wells suggests that the phenomenon is more fundamental in nature.

The phenomenon observed by Fei et al was recently explained by Goodwin et al [10]
in terms of a two-mode model involving the interaction of the kink with the radiation at the
impurity point. Clearly, in our case we have two special points (at the two ‘edges’ of the
well where the potential changes). Hence, it may make sense to develop a model based on
oscillations at these two points. This is what we do in the next section.
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Figure 4. Velocity of the kink leaving the well as a function of its velocity as it approaches the
well (p = 0.5, A0 = 0.2). (a) Full plot. (b) A close-up for small velocities.

3. Our effective model

Following Fei et al [3] and Goodman et al [10] we consider the following ansatz:

@(x, 1) =2tan"" exp(6(1)(x — xo(1))) +a(1)g(x) + b(1)h(x), (7
where we take g(x) and i (x) in the form
g(x):exp(—'x;mD), h(x):exp(—lx;mF), )
and
A, B, -
D { X >p Fe { X >—-p ©
B, x <p, A, X < —p.

Thus, we have allowed the kink to change its position x(¢) and its slope 6 (¢), and a(¢) and b(¢)
represent the excitations of the vacuum. Our choice of functions g(x) and & (x) is motivated by
the ideas of Goodman et al [10] who have shown that such a term describes well the response
of the vacuum around the defect to an excitation. They have studied this in detail; the defect
generates a standing wave which is well described by an exponential. In our case, we can
think of the well as corresponding to two defects (its two edges) and so this motivates our
choice of the ansatz (7)—(9). We thus ignore, for the time being, the standing waves inside
the well. Of course, we do not expect it to be perfect; we only hope that it captures the main
features of the phenomenon we are looking at.

To obtain an effective model we put this expression for ¢(x,¢) into the Lagrangian
density (3) and attempted to integrate it over x. However, as this leads to rather complicated
expressions which we had not succeeded to calculate analytically we resorted to an expansion
(in the perturbation due to the well). Hence we put ¢ = ¢y + d¢, where

@o = 2tan”" exp(8(1)(x — xo(1))) (10)

and

S =a(t)g(x) +b(t)h(x). (11
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Next, we expanded

sin? (g + 8¢) ~ sin(gp) + sin(2¢0)8¢ + cos(2¢) (8¢)* - - - . (12)
Then as
dp _ 2 (PN . O(x—x0) 4 » ;
rrin 2 cos 5 [60(x — xp) —Oxple +ag(x)+bh(x) (13)
we found that
0 900\ 2 1 7202
le/ de (220) = 27 4es2. (14)
0 ot 12 63
The 5¢ terms give us by themselves
1 1 1 4 2
T, = —(a*+b* +ab R — (e O 1P 15
2= 5@ )(B A) a [A+Be A-BC e (15)
Finally, we calculated the ‘crossed terms’ and we got (for the terms involving i, and & and b)
T3 = —260x0d K ! + ! (16)
PTTTNNIR 2T A g |

where K = exp(@ (p — xp)) and a similar expression for —20x0b, except that this K was
replaced by K = exp(8(—p — xo)). For the terms involving & and & we got

Ty — 204 K 1 B 1 +p(1—K2) 1 N 1 a7
B (N N R A S P A S

The expression involving §b was again the same with K replaced by K. These expressions
are not exact; we obtained them by making several approximations of the type

) e—(0+5)z K 1
K| d ~ , 18
/0 TeK2e ™ T4K2(9+2) (18)

which should be reasonably reliable given the exponential form of the dependence of the
integrands on z, etc.

Next, we calculated the contribution due to (3—“’) . Performing the integrations and making
similar approximations as before we got

(a +b2) s, (A+B?
P = _— 4(A+B Py ————— (e P° —e? 19
| st A BT @ e | (19)
plus terms linear in @ and b. They are given by
PPN L L (N S P S (20)
T 2T ) \Mrve TR

Finally, we had to add the terms coming from A? sin?(¢). The contribution due to the well

is given by
i » L ) P 620(x7)r0)
Ao/psm (¢o0) dx :)‘O/pm

A sinh(26p)
"~ 6 cosh(20x) + cosh(20p)
The contribution due to ffooo dx A% sin’(¢) can be calculated in a similar way and we get
o

p= (22)

2y
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from the ¢ term,

2 =1 72
m:zx%( 1 1 )[K(l K, Ka K)] 23

+ a =
4-0 L+ (1+K?)? (1+K2)7?

from the terms linear in §¢ and

A3 11 4 2
Ps="11 @+ (=+—)+ab e By (e —e )| |. (24)
2 B A A+ B A—B

Adding all these terms together we get the Lagrangian for our effective model. This
Lagrangian is given by

242 1 . . . . .
= %9—3 +0i%+ §(a2+b2)Bo+abBl —20x0(aDy(0) +bD;(9)) +20(aD>(0) + bD5(9))
(@®+b?) ab A+B 5
—B—T(A+B)—Z+ 5 8(aDy(0) +bD;(0)) — 213 Dg (6, x0)
)\% ) ,ab 2(a2+172)
- 203 (aD4(6) + bDs()) — x1731 — AITBO, (25)
where
11 4 2
By=—+—, B, = e 7B 4 (e "B —erh
B A A+B A—B
and where the seven functions D;,i =0, ..., 6, are given by
Dy(0) = K ! + !
N T I¥K2|60+05B  05A—6]
Dy(8) = K 1 . 1 . 1-K? 1 . 1
T UYKE| (0+05B)? T (0.5A —60)? PIYK2 | 90+05B T 05A—0 |
D(G)—D(Q)I_KZ
s PO ke

The functions D;(0) and Ds(0) have the same form as Dy(6) and D4(6), respectively, after
the replacement K — K and

Dye) = —K 1 . 1 1—K? o,
Tk (#+0.5B)> (0.5A —0)? p1+k2 0+05B 05A—-6]
Finally, Dg (0, xo) is given by
1 sinh(260p)
Dg (8, x0) = ~ . (26)
6 cosh(@(xo + p)) cosh(@(p — x¢))
The derived Lagrangian involves four variables xg, 6, a and b but its equations are rather
complicated. Hence, we have solved them numerically. In the next section, we discuss our
solutions of the equations which follow from the Lagrangian (25).

4. Results in our effective model

We have looked at the equations for 8, xo and a and b, which follow from the Lagrangian (25)
and solved them numerically. As our initial conditions we took xo = —40,0 = 1 and set,
initially, a = b = 0. Of course, we also put @ = b = & = 0 and studied the behaviour of
our system as a function of xyo. We also varied a little the parameters A and B, which appear
in the description of the effects due to the well. For most of our work we used the values
around 0.5 (and used the fact that we expect A% ~ € + B?). To have the well similar to the
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one we used in the full simulation (shallow well) we put € ~ 0.16. This is due to the fact
that the linearized equations (i.e. for the waves) differ, inside and outside the well, by a term
proportional to (A3 — 1)u. In our case, this translates to A> — B> ~ € and so for a shallow
well we have e ~ 1 — A% = 0.16.

We simulated the time evolution using the fourth-order Runge—Kutta method and have
found that the well distorts the kink quite strongly but, as expected, it can trap the kink like
in the original sine-Gordon model. However, as the effective system does not absorb energy
after a few bounces the kink can escape (forwards or backwards). Of course, in the real
system there are many degrees of freedom of radiation which can get generated in the hole
and such bounces are very rare. So to model these ‘extra’ modes of radiation which take the
energy out of the modes we are describing we introduced an absorption of the oscillations
of (1), i.e. we added a term proportional to 6 in the equation for . This has, indeed,
reduced the oscillations in # and made the model more realistic. The obtained curves for 6 (1),
see figure 5, where we present them for two cases (trapped and transmitted kinks), were very
much as expected. Originally we had 6 = 1, then after the kink entered the hole its values
changed by about 10-20% (the actual value depended on the strength of the potential) and
oscillated over this value while the kink moved in the hole.

As the kink moved into the hole its & changed. As the kink in an isolated hole is broader
initially 6 changed down to a smaller value but then due to the interaction with the generated
waves started oscillating, in fact, around a value larger than 1. This is seen in figure 5(a) for
t ~ 900. Then, the kink tried to leave the hole. It has almost made it (we present the plots of
the case in which the velocity is very close to the critical one). The kink’s 6 returned to 1 and
it remained there as the kink was ‘struggling to get out of the hole’. This is seen when one
compares 6 (¢) with the position(#) seen in figures 5(a) and (c). Finally, the kink fell back into
the hole and oscillated each time when it was coming to the edge of the hole its 6 dropping
below 1 and then moving above 1. We do not understand this aspect of the motion (except
by realizing that this must be due to the interaction with the waves at the edges of the hole).
At the same time, the parameters of the excitation of the vacuum, a and b, became nonzero.
However, as these excitations were very small a and b were always very small (much less
than 1), which justifies our approximation of treating the excitations of the vacuum as a small
perturbation.

In figure 6, we present the curve of v,y as a function of vy, obtained in our model, i.e.
based on the Lagrangian (25). We note that although our effective model is quite crude it
reproduces figure 3(b) rather well. Hence, we believe that the mechanism of Goodman et al
[10] explains the behaviour of the kinks in our case too. Of course, we could check this in
more detail by making fewer approximations and, perhaps, performing the evaluation of all
the difficult integrals numerically, but we are not sure that the extra effort required would be
justified.

5. Another effective model

Given that our effective model reproduces the results of our simulations rather well we have
decided to check the generality of this observation: is this related to the existence of standing
waves in the neighbourhood of the well or is our model somewhat unique? Hence, we
considered another model this time involving a standing wave in the well. The idea here
is to explore further whether the reflections observed in the full model can be related to the
interaction of the soliton with the waves in the well. Hence, this time we have taken for our
field configuration ¢ = ¢y + S¢, where, as before,
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o = 2tan”" exp(6 (1) (x — x0(1))) 27
and
S = a()g(x). (28)
This time for g(x) we have taken
TX 1 3rx
g(x) = cos <$> + 3 cos (E) (29)

inside the well (i.e. for |[x| < p and zero otherwise). Our g(x), and its derivative, vanish at
x = £p and the idea is that as the soliton enters the well its slope 6(¢) changes. This excites
the modes described by g(x) and so a(¢) becomes nonzero. This puts some energy into these
modes which then interact with the soliton. Due to this interaction this energy can, every now
and then, be given back to the soliton resulting in its reflection or transmission.

Our choice for the function g(x) is motivated by the idea that we want to have a standing
wave in the hole itself and that we do not want this wave to transmit momentum through
the boundaries of the hole (so that g—f vanishes at the boundaries of the hole). We could, of
course, have chosen to use the analytical expression for the lowest vibration mode of the well,
including the two exponential tails on either side of the well. Unfortunately, this would have
resulted in a model that would have been too complicated to study and so we decided to ignore
the exponential tails and use (29) to describe the vibrations inside the well.

Like in the previous model, we do not expect such a wave to be an excellent description
of what is seen in the full simulations, but we expect it to capture its gross features. Our hope
is that this model also reproduces the main features of the simulations of the full model thus
supporting our feeling that the origin of the reflections, etc, does lie in the interaction of the
kinks with the oscillations of the vacuum set off by the kinks when entering or leaving the
region of the hole. If this is confirmed more studies will have to be performed to determine
these oscillations and their role in more detail.

Like in the previous model, we have put the expression for ¢ into the original Lagrangian,
integrated over x obtaining an effective model involving xo, 6 and a. Then we performed some
simulations starting with a soliton originally far from the well moving with some velocity
towards it. Like in the previous model, we have absorbed energy through a term proportional
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Figure 7. Outgoing velocities as a function of incoming ones—in our second effective model.

to % in the equation for 6. Also, like in the previous case we have found some reflections
below the threshold for the scattering through the well. Their details depend a little on the
strength of the absorption: at no absorption we have reflections, and transmissions forward, at
much lower velocities, the higher absorptions kill the reflections and transmissions. They also
raise the threshold for transmission. Of course, it is difficult to reliably estimate the degree of
absorption as in the full model there are many modes of oscillations in the well. So in the end
we have used very low absorption; then the threshold for transmission was close enough to
what is seen in the full simulation but we had more reflections below threshold. To improve
the model, we should have used more modes in the well but this would have resulted in a
more complicated model with more degrees of freedom. As we have only wanted to test our
basic idea (that the reflections are due to the interaction of the soliton with radiation modes),
in this paper, we decided to look at a model which is as simple as possible, i.e., with a very
few degrees of freedom. Our choice of two low-lying modes was dictated by simplicity and
the basic belief that the lower modes would get excited first and so are more important.

The time dependence of 6 was very similar to what was seen in the first effective model,
i.e. originally 1, then small perturbation, oscillation around the new value, perturbation and,
after further oscillations, gradual return to the original value, i.e., 1. Thus, both models have
captured this aspect of the scattering very well. In figure 7, we present the curve of vy, as
a function of v;, obtained in this (second) model (with a reasonable absorption).
Once again, we see that the model reproduces well the pattern of the simulations of the full
sine-Gordon model (figure 3(b)).

6. Conclusions

We have looked at a system involving a sine-Gordon kink scattering on a ‘well’-like potential.

We have found that, like in (2+1) dimensions, when the kink was sent towards the well
it gained some energy as it entered the well. Some of this energy was converted into kinetic
energy of the kink, some was radiated away. So when the kink tried to ‘get out’ of the well it
had less kinetic energy than at its entry and when this energy was too low it remained trapped
in the well. However, as the soliton moved in the ‘well’ it interacted with the radiation in the
well and at some specific values of the initial velocity this interaction resulted in the kink being
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ejected backwards from the well (with much reduced velocity). Thus, seen from outside, the
well acted as if it reflected the kink, something which is seen in quantum systems but which
is less well known in classical systems.

We have performed many numerical simulations to make sure that the observed behaviour
is not an unexpected artefact of our numerical procedures and the pattern survived all applied
tests. Hence we believe the effect to be genuine.

We have noted that a similar behaviour was observed many years ago by Fei et al who
studied the scattering of kinks on a one-point impurity. This behaviour was recently explained
by Goodman et al [10] as a two-bounce resonance between the kink and the oscillation of the
defect. This has made us to consider two models of a similar nature. Both models are very
simple, clearly too simple, but we wondered whether they would qualitatively reproduce the
observed effects. Both involve kinks interacting with radiation and we generate this by taking
an ansatz involving a kink (which can vary its position and slope) plus a couple of radiation
modes. This ansatz is then put into the full equation which is then integrated out resulting
in a model involving a few variables, namely, the position and the slope of the kink and the
coefficients of the oscillation modes of the vacuum (modelling radiation).

The first model involved taking standing waves that are located at the edges of the well;
the other one involved just one wave in the well. We have found that both models reproduced
the main features of the observed behaviour quite well suggesting that the mechanism of
Goodman et al is more general in nature and that, in general, the observed phenomenon of
reflection of the solitons on the well is related to their interaction with the waves in the well.
Of course, both models are too simplistic; to describe properly the full process we have to
understand better which modes of radiation are important and why. This involves more work
and is planned for the future. However, the work done so far suggests that we are on the right
track and gives us encouragement for the further study. This is confirmed further by what we
saw in a two-dimensional model [2] in which the solitons have genuine vibrational as well as
radiation modes.

Incidentally, in our calculation we have used the correct initial condition, i.e., with the
correct relativistic factors (y = \/1;_7) Of course, missing such factors would not make
sense, but on the other hand this factor is very very close to 1 for small velocities and so at first
sight may appear not to be very important. To check this we have decided to study the effects
of its absence—which in large part is equivalent to picking a slightly ‘wrong’ initial slope 6.
Thus, had we ignored y factors and used the nonrelativistic form of the initial condition (i.e.
not modified 6 in (10) and (26)) we would have obtained instead of figure 7 the dependence
which is shown in figure 8. We note an interesting oscillatory behaviour. This oscillation
resembles very closely the oscillation of 6(¢) seen in both effective models. Of course, when
the kink enters a hole it does have a ‘wrong’ 6 so it changes it to a more appropriate value,
overshooting a bit, and this leads to an oscillation in 8. Here we did start with ‘wrong’ 6 and
not surprisingly this leads to the oscillations from the start and overall much larger oscillations.
Of course, the oscillation in our case is overemphasized by the use of too few radiation modes
but we wondered whether it would be seen in the full model too (i.e. whether the addition
of further modes would wash them out). Hence, we also have redone the full simulations
without the relativistic factors. Our nonrelativistic curve is shown in figure 9. We note the
extra oscillations. Their origin lies clearly in the fact that the absence of y factors induces
initial distortions resulting in the change of 6. This affects the phase of the soliton and so
alters its interaction with the wave in the well resulting in the curve shown in figure 9. It
is interesting to note that our effective models also reproduce these oscillations, thus giving
further support for the validity of our claim that the interaction with the well proceeds through
the generation of standing waves and their interference with the solitonic fields. Of course,
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Figure 8. Outgoing velocities as a function of incoming ones—in our second effective model
without relativistic corrections.
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Figure 9. Outgoing velocities as a function of incoming ones—in the full simulation without
relativistic corrections.

the agreement between the results of the full simulations and of the effective models is only
qualitative in nature as in our effective models we used only some standing waves which were
chosen somewhat ad hoc. To get a quantitative agreement we have to determine the relative
importance of different waves—this problem is currently under consideration.

As briefly mentioned in the introduction, a wide class of physical systems are described
by the sine-Gordon equation, especially in solid state physics, and it would be interesting to
see what the physical implications of a position-dependent potential, like the one used in this
paper, would be.

Let us finish by adding that there have been many other studies of the sine-Gordon model
(for a good review see, e.g., [18]). Some of them involved adding ‘boundaries’ or sewing
up solutions of sine-Gordon models with different parameters while still preserving their
integrability [19, 20]. In those papers there were regions of spatial variable x in which A was
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different; and then at the junction points the boundary conditions were imposed so that such
models were integrable. The requirement of integrability (see [20]) involved derivative terms,
etc, on the boundary. In our case, we require the continuity of the function and its derivative;
hence our model is non-integrable and so the change of the potential leads to the effects that
we have discussed.
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